微信扫一扫
分享到朋友圈

孩子成绩老是提不高?小学数学解题方法和技巧,总有一种适合你

作者:临海教育 来源:临海教育 公众号
分享到:

01-04

中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望家长们能培养孩子从小就习惯用这些思维和方法来解题!



形象思维方法

       形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

  形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。


1实物演示法


  利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

  这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。


  二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

  特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

  所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。


2图示法


  借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

  图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

  在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。


3列表法


  运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

  用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。


4探索法


  按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

  第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

  第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

  第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。


5观察法


  通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

  小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

  如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

  “观察”的要求:

  第一、观察要细致、准确。

  第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。


6验证法


  你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

  验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

  (1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

  (2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

  (3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

  按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

  (4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。


抽象思维方法

  运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

  抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

  形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

  辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

  小学、中学数学要培养学生初步的抽象思维能力,重点突出在:

  (1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

  (2)思维方法上,应该学会有条有理,有根有据地思考。

  (3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

  (4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。


7对照法


  如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

  这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。


8公式法


  运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。


9比较法


  通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

  比较法要注意:

  (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

  (2)找联系与区别,这是比较的实质。

  (3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

  (4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

  (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。


10排除法


  排除对立的结果叫做排除法。

  排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。


解题技巧


选择题答题攻略


1剔除法


利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。


2特殊值检验法


对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。


3极端性原则


将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。


4顺推破解法


利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。


5逆推验证法


将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。


6正难则反法


从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。


7数形结合法


由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。


8递推归纳法


通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。


9特征分析法


对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。


10估值选择法


有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。


填空题答题攻略


数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。


1直接法


这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。


2特殊化法


当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。


3数形结合法


借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。


4等价转化法


通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。


附:小学阶段全部数学公式


对于数学学习而言,最重要的是理解并熟记所有的数学公式,这样才能真正的将公式运用到数学答题中。可见,数学公式的重要性!为大家收集整理的小学全部数学公式,供大家学习参考!


1.每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数


2.1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数


3.速度×时间=路程

路程÷速度=时间

路程÷时间=速度


4.单价×数量=总价

总价÷单价=数量

总价÷数量=单价


5.工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率


6.加数+加数=和

和-一个加数=另一个加数


7.被减数-减数=差

被减数-差=减数

差+减数=被减数


8.因数×因数=积

积÷一个因数=另一个因数


9.被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学数学图形计算公式

1正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a


2正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a


3长方形

C周长 S面积 a边长

周长=(长 宽)×2

C=2(ab)

面积=长×宽

S=ab


4长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽长×高

宽×高)×2

S=2(abah bh)

(2)体积=长×宽×高

V=abh


5三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高


6平行四边形

s面积 a底 h高

面积=底×高

s=ah


7梯形

s面积 a上底 b下底 h高

面积=(上底 下底)×高÷2

s=(ab)× h÷2


8圆形

S面积 C周长  d=直径  r=半径

(1)周长=直径×π=2×π×半径

C=πd=2πr

(2)面积=半径×半径×π


9圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径


10圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1非封闭线路上的植树问题主要可分为以下三种情形:


⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)


⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数


⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)


2封闭线路上的植树问题的数量关系如下


株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数


盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数


相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间


追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间


流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2


浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量


利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

主编丨昍 朤   版权归原作者所有,如有问题请联系我们

大家都在看






















阅读8226
数学 技巧 
举报0
关注临海教育微信号:gh_868620bd33d1

用微信扫描二维码即可关注
声明

1、头条易读遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2、本文内容来自“临海教育”微信公众号,文章版权归临海教育公众号所有。

评论
更多

文章来自于公众号:

邮箱qunxueyuan#163.com(将#换成@)
微信编辑器
免责声明
www.weixinyidu.com免责声明    商务合作1758059460
版权声明:本站收录微信公众号和微信文章内容全部来自于网络,仅供个人学习、研究或者欣赏使用。版权归原作者所有。禁止一切商业用途。其中内容并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。如果您发现头条易读网站上有侵犯您的知识产权的内容,请与我们联系,我们会及时修改或删除。
本站声明:本站与腾讯微信、微信公众平台无任何关联,非腾讯微信官方网站。
粤ICP备16075700号-1