微信扫一扫
分享到朋友圈

黎曼猜想即将解开?这个“纯数学领域最重要的问题之一”,一篇文章讲清楚

作者:果壳网 来源:果壳网 公众号
分享到:

09-21

编者按



昨天,一条大新闻炸翻了学术界:著名数学家、菲尔兹奖和阿贝尔奖双料得主阿提亚爵士(Sir Michael Francis Atiyah)宣布要在本月24号(也就是3天后)在海德堡宣讲自己对于黎曼猜想的证明。

 

Scientific American

 

数学家们有个笑话:怎样用世界上最难的方法挣到100万美元?

答:去证明黎曼猜想吧!

 

这是因为2000年5月的时候,美国克雷数学研究所(Clay Mathematics Institute, CMI)为了呼应1900年希尔伯特提出的23个历史性数学难题(也称“希尔伯特难题”)而设立的了一个成为“千禧难题”的数学问题挑战,一共7个问题,解出一道便可获得100万美元的奖金,挑战时间不限,题解必须发表在国际知名刊物上,并且要通过2年的验证期和专家小组的审核。

 

这7个问题中,以黎曼猜想最为著名,它是数论的分支解析数论的一大研究主题:质数的分布。据说,每年各大研究中心都会收到无数的神秘来信声称自己证明了“黎曼猜想”,数学家们跃跃欲试,科学界也一直热切关注。

 

所以备受瞩目的“黎曼猜想”究竟是个啥?跟我们有关系吗?


 请收看《黎曼猜想,质数阴谋论,以及你不能说的秘密》:


1

为什么研究质数

 

黎曼猜想是一个数论里面的重要猜想,几百年来无人能解。那么,这么困难复杂的数学猜想,跟你有关系吗?请先看我瞎编的这样一个故事:

 

有一天,我的一个学数学的朋友给我发了一条微信,里面只有一串数,983040000。


我看到了之后,顿时觉得不妙,赶紧约这个朋友出来谈心。果然,他被女友甩了,悲伤绝望,有点想不开。


终于,在我的劝说下,朋友成功走出了阴霾,找回了面对人生的信心。

 

那么我是怎么知道这个朋友不开心的呢?因为983040000=219·31·54。这里面把质数从小到大排序:


• 第一小的质数(也就是2)出现了19次;

• 第二小的质数(也就是3)出现了1次;

• 第三小的质数(也就是5)出现了4次。


因此如果认为这代表一个单词,那么第一个位置上的字母是第19个字母(S),第二个位置上的字母是第1个字母(A),而第三个位置上的字母是第4个字母(D):合起来就是SAD。所以我知道这个朋友一定遇到伤心的事情了。

 

当然这个故事是我瞎编的。但是我们的生活中,无论是银行数据,还是国家机密,还是个人隐私,这些东西的保护都离不了密码,离不了加密的手段


如果我想给你一串信息,又不想让其他人知道,怎么办呢?咱俩可以先商量好几个特别特别大的质数,比如说p、q和r。如果我想给你发送一个秘密的数字378,那么我实际上给你发送p3q7r8,一个巨大无比的数字。从我这里的角度,我可以很轻易的用计算机算出来这个乘法,得到结果发给你。从你的角度,你拿到了这个巨大的数字之后,只需要用p、q和r去除,就可以很快把幂解出来,得到378。


但是假设某个坏蛋截取了我发的这个秘密信息,那么想要知道内容,他就必须分解质因数。然而在不知道p、q和r的前提下,分解质因数是一个非常复杂和缓慢的过程,他可能需要好几百年才能破译出来。如此,我们的秘密就得到了保护。

 

这里面注意,p、q和r都必须要特别大,这时候分解质因数才会特别慢,甚至几百几千年。如果p、q和r分别是2,3和5,那么分解质因数就非常快了,可能一秒钟完事。

 

所以说,找到大的质数,了解质数都分布在哪里,是一个十分重要的事情

 

2

质数规律

 

数学家多年研究,发现了一个惊人的事情:质数分布最大的规律,就是它几乎完全随机

 

这里我们举一个简单的例子。假设我们从0到1之间均匀地随机挑一个实数。那么首先,我们知道这个实数的平均值应该是1/2。另一方面,这个随机的实数当然不一定是1/2,1/2只是在描述它平均的时候的样子。实际上它和1/2往往会有一定的正的或者负的偏差。

 

一个数学家发现的重大规律就是这个:平均来讲,1到n的正整数中一共有

个质数。当然,这并不是说1到n里面一定有恰好n/ln(n)个质数。对于有的n来说,1到n里面的质数比较多一点。而对于有的n来说,1到n里面的质数比较少一点。但是随着n越来越大,n/ln(n)个质数的这个估计就必然会越来越准确。


所以如果有人问你,1到10100里有多少个质数呀?你大可以拍拍脑袋说,我猜有

个质数,基本离正确答案不会差太远。一般来说,如果我们用π(n)来代表1到n里面的质数个数的话,那么

会如下图所示,逐渐趋于1。

 

prime number theorem | wikipedia

 

事实上,随着人们对质数的了解越来越多,我们越来越发现,在宏观上来讲,质数几乎等于是按照这个n/ln(n)来进行的一种均匀分布。无论是你去数质数的个数,还是计算所有质数的和,还是研究孪生质数,都会发现质数呈现出一种惊人的宏观均匀性。这就好像有一个操场上有无数多个学生,尽管每个学生都在瞎走一气,毫无规律可循,但是总体来看,居然发现操场上每个平方米里都恰好塞了4个学生!这真是很难想象的事情。但是目前来说,几乎我们对质数的一切了解,都在指向这个方向。

 

这也进一步说明了,为什么质数特别适合做密码:因为质数本身就几乎是随机的,很难找到具体的规律,因此最适合作为加密的手段

 

3

那么怎么研究质数

 

咱们先别想那么多。假设我们就想研究三个数字,1,2,3。

 

怎么研究呢?一种研究方法是,我们可以考虑研究这个函数:

我宣称,这个函数的性质就包含了1,2,3的一切性质。为什么呢?

 

假设我们取s=10。那么这时候f(10)=1+1024+59049=60074。大家可以看到,这时候我们的f(10)和310没差多少。事实上,随着s越来越大,1s+2s相对于3s来说就越可以忽略不计。所以f(s)的这个s趋于无穷的极限的性质,其实就包含了一切的3的性质

 

反过来,我们取s=-10。那么这时候f(10)=1+特别特别小+更加小,约等于1。可见,f(s)的这个s趋于负无穷的极限的性质,其实就包含了一切的1的性质

 

那么怎么研究放在中间的2呢?这时候我们就要取复数了。考虑

当然,大家未必知道怎么计算复数幂,那么我直接把答案写出来吧。这时候,1s仍然是1,因为1的任何幂都是1。而2s是某个复数。最后,神奇的是,这个时候恰恰好3s=-1,哇!所以说

这个时候研究f(s)就等于是在研究2,因为1的部分和3的部分完全抵消掉了。

 

更广义的来说,如果我们想研究所有的正整数,那么只要我们搞清楚函数

的一切性质,那么我们就搞清楚了全部的正整数。通过调整不同的s的值,我们就可以得到各种各样的抵消。

 

4

黎曼猜想

 

黎曼定义了一个ζ函数(念zeta),

这基本上和我们之前定义的差不多,只是差了一个负号。(黎曼定义这个负号,是因为希望s越大收敛性质越好。)这里面s可以去各种各样的复数,而对应的这个函数的值可能是无穷,可能是0,也可能是某个其他的复数。

 

黎曼猜想宣称,如果ζ(s)=0,那么s的实数部分一定是1/2。换句话说,s一定是1/2+b·的样子。


但是为什么我们要在乎ζ(s)=0的值呢?

 

一般来说,我们调整各种各样的s的值的时候,ζ(s)里面合数的部分往往随随便便就被质数的部分“吸收”了,而质数和质数的幂相对来说就很却难被消掉,往往会残留下来。那么如果你恰好发现,对于某个s,ζ(s)居然等于0,也就是说质数也都消光了。这就说明质数里面必然存在的某种针对这个s的结构。可以这样想,一般来说,我们每找到ζ(s)的一个根,就等于找到了一个质数里面的规律。

 

而一般来说,不妨这样认为:一个根s的实数部分是1/2时,这对应的往往是最“没用”的规律。一个根s的实数部分离1/2如果很遥远,就意味着质数存在某种惊人的巨大的结构性。(按照陶哲轩的话说,说明所有的质数们都一起针对这个s的值存在着某种惊天的阴谋!)所以黎曼猜想等于是在说,质数最大的规律,就是没有什么突出的规律。这样看来,黎曼猜想是一种悲观论调

 

那么,如果黎曼猜想是正确的,那么说明质数是没有惊天的结构的,是几乎均匀的随机的。这等于说,我们进一步验证了“质数其实是按照n/ln(n)来进行随机均匀分布的”这个数学直觉。学过概率统计的同学可能知道,随机数往往符合大数定理。黎曼猜想正确的一个明显的后果就是,质数不仅仅似乎是按照n/ln(n)的概率均匀分布,而且还符合大数定理!而大数定理对于随机数的研究是至关重要的。同理,黎曼猜想对于质数的研究也是至关重要的。

 

因此,不出意外的,如果黎曼猜想是正确的,那么无数个我们对数论的猜想和直觉都会得到验证。

 

5

黎曼猜想错了,天会不会塌?

 

如果能够找到黎曼猜想的反例,那么反而是一个天大的喜事!为什么?因为一旦我们找到了一个ζ(s)=0的根,且s的实数部分远离了1/2,这就说明我们找到了一个关于质数的极其重要的规律!(发现了质数们的惊天阴谋!)这个规律很可能会我们对数的研究和认识带来惊天动地的飞跃。

 

恰恰是,如果黎曼猜想被证明了,反而无关紧要。大家早就猜测黎曼猜想是正确的了,很多数学家早就已经在假设黎曼猜想正确的前提下,继续往前研究了。所以如果有人证明黎曼猜想是正确的,这只不过是验证了我们一直以来都没错而已,却并不能够带来进步。

 

事实上,这有一个更有趣的现象。有很多的数学定理,比如说Littlewood定理,居然是这样证明的:

 

1) 假设黎曼猜想是正确的。那么质数具有非常美好的宏观均匀性。那么运用美好的宏观均匀性,证明了Littlewood定理。(Littlewood定理在这部分大概用了12页。)

 

2) 假设黎曼猜想是错误的。那么黎曼猜想的反例就会给出一种质数之间的惊人的结构。这种结构甚至可以让你一步登天,直接证明Littlewood定理。(Littlewood定理在这部分大概只用了半页。)

 

3) 所以说,无论黎曼定理是对的还是错的,反正Littlewood定理都是对的。证明完毕。

 

另外,大家可以看到,黎曼定理错误的时候,往往是证明更简洁更方便的时候!

 

总结一下,哪怕我们永远也不会知道黎曼猜想的对错,仅仅是黎曼猜想这个概念,就已经对数学产生了很大的推进作用。这就好像梦想一样,无论能否实现,都能让我们成为更好的人。


6

结语 


老实说,我并不是研究数论的专家,以上只是我当年上分析数论课时积攒的一些直觉。以上言语中,如果有误,敬请指出。



本文作者在交给我们这篇“黎曼猜想101”的稿子时,顺便提了一下他的导师陶哲轩在今年早些时候在一篇博文中证明了黎曼猜想即便正确,也是“擦边正确”。

 

用人话来说,就是有这么一个东西,如果黎曼猜想正确,那么会小于等于0。Tao尴尬地证明了这个东西大于等于0。

 

感兴趣的小伙伴,欢迎点进阅读原文看原文章吧。

 

果壳已经切好了瓜,24号阿提亚爵士的宣讲,我们拭目以待。





本文来自果壳,谢绝转载.如有需要请联系sns@guokr.com

(欢迎转发到朋友圈~)


果壳


ID:Guokr42

整天不知道在科普啥的果壳

建议你关注一下

阅读9147
领域 文章 
举报0
关注果壳网微信号:guokr42

用微信扫描二维码即可关注
声明

1、头条易读遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2、本文内容来自“果壳网”微信公众号,文章版权归果壳网公众号所有。

评论
更多

文章来自于公众号:

果壳网

微信号:guokr42

邮箱qunxueyuan#163.com(将#换成@)
微信编辑器
免责声明
www.weixinyidu.com   免责声明
版权声明:本站收录微信公众号和微信文章内容全部来自于网络,仅供个人学习、研究或者欣赏使用。版权归原作者所有。禁止一切商业用途。其中内容并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。如果您发现头条易读网站上有侵犯您的知识产权的内容,请与我们联系,我们会及时修改或删除。
本站声明:本站与腾讯微信、微信公众平台无任何关联,非腾讯微信官方网站。